
RBF-Partition of Unity Method: an overview of recent results

RBF-Partition of Unity Method: an overview of recent

results

Alessandra De Rossia

In collaboration with
Roberto Cavorettoa, Emma Perracchioneb

aDepartment of Mathematics “G. Peano”
University of Torino – Italy

bDepartment of Mathematics “T. Levi-Civita”
University of Padova – Italy

Localized Kernel-Based Meshless Methods for PDEs
ICERM, Providence, Rhode Island

Alessandra De Rossi (University of Torino) alessandra.derossi@unito.it August 7–11, 2017 1 / 54



RBF-Partition of Unity Method: an overview of recent results

Introduction

Acknowledgements

This talk gives an overview about the Partition of Unity (PU)
interpolation, locally implemented by means of Radial Basis Functions
(RBFs), and proposes some original investigations.

Other co-authors: Stefano De Marchi (University of Padova, Italy);
Greg Fasshauer (Colorado School of Mines, Golden, CO); Gabriele
Santin (University of Stuttgart, Germany); Ezio Venturino (University
of Torino, Italy).

Funds: Department of Mathematics “G. Peano” via the projects
“Metodi numerici nelle scienze applicate” (Principal Investigator (PI)
A. D.), “Metodi e modelli numerici per le scienze applicate” (PI A.
D.), European Cooperation in Science and Technology (ECOST),
Gruppo Nazionale per il Calcolo Scientifico (GNCS–INdAM).

These researches have been accomplished within RITA (Rete ITaliana
di Approssimazione).

Alessandra De Rossi (University of Torino) alessandra.derossi@unito.it August 7–11, 2017 2 / 54



RBF-Partition of Unity Method: an overview of recent results

Introduction

Outline

Preliminaries: RBF-PUM interpolation.

Improvements of the RBF-PUM:

efficiency;

accuracy;

positivity;

stability.

Approximation of track data via RBF-PUM.

Alessandra De Rossi (University of Torino) alessandra.derossi@unito.it August 7–11, 2017 3 / 54



RBF-Partition of Unity Method: an overview of recent results

Preliminaries: RBF-PUM interpolation
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Preliminaries: RBF-PU interpolation

Statement of the problem

Problem

Given XN = {x i , i = 1, . . . ,N} ⊆ Ω a set of distinct data points (or data
sites or nodes), arbitrarily distributed on a domain Ω ⊆ R

M , with an
associated set FN = {fi = f (x i ), i = 1, . . . ,N} of data values (or
measurements or function values), which are obtained by sampling some
(unknown) function f : Ω −→ R at the nodes x i , the scattered data
interpolation problem consists in finding a function R : Ω −→ R such that

R (x i ) = fi , i = 1, . . . ,N.

Here, we consider RBFs and thus the interpolant is expressed as

R (x) =
N
∑

k=1

ckφ (‖x − xk‖2) , x ∈ Ω.
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Preliminaries: RBF-PU interpolation

Uniqueness of the solution

The problem reduces to solving a linear system Ac = f , where the
entries of A are given by

(A)ik = φ (‖x i − xk‖2) , i , k = 1, . . . ,N.

Moreover, the problem is well-posed under the assumption that φ is
strictly positive definite. We remark that the uniqueness of the
interpolant can be ensured also for the general case of strictly
conditionally positive definite functions, by adding a polynomial term.

In what follows, we might also refer to the more general case for
which Φ : RM × R

M −→ R is a strictly positive definite kernel, i.e.
the entries of A are given by

(A)ik = Φ(x i , xk) , i , k = 1, . . . ,N.
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Preliminaries: RBF-PU interpolation

Examples of RBFs

In Table 1, we summarize several RBFs. Note that r denotes the
euclidean distance and ε the shape parameter.

Table 1: Examples of RBFs.

φ(r) = e−(εr)2 Gaussian C∞ G

φ (r) = (1 + (εr)2)−1/2 Inverse MultiQuadric C∞ IMQ

φ (r) = e−εr Matérn C 0 M0

φ (r) = e−εr (1 + εr) Matérn C 2 M2

φ (r) = e−εr (3 + 3εr + (εr)
2
) Matérn C 4 M4

φ (r) = (1− εr)
2
+ Wendland C 0 W0

φ (r) = (1− εr)
4
+ (4εr + 1) Wendland C 2 W2

φ (r) = (1− εr)
6
+

(

35(εr)2 + 18εr + 3
)

Wendland C 4 W4
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Preliminaries: RBF-PU interpolation

Reproducing kernels and Hilbert spaces

Definition

The space NΦ(Ω) = span{Φ (·, x) , x ∈ Ω}, equipped with the bilinear
form (·, ·)

HΦ(Ω)
defined as

(

m
∑

i=1

ciΦ (·, x i ) ,
n
∑

k=1

dkΦ (·, xk)

)

HΦ(Ω)

=
m
∑

i=1

n
∑

k=1

cidkΦ (x i , xk) .

is known as native space of Φ.

Definition

The separation and fill distances, which are a measure of data distribution,
are respectively given by

qXN
=

1

2
min
i 6=k

‖x i − xk‖2 , hXN
= sup

x∈Ω

(

min
xk∈XN

‖x − xk‖2

)

.
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Preliminaries: RBF-PU interpolation

Error bounds for RBF interpolants

Theorem

Suppose Ω ⊆ R
M is open and bounded and satisfies an interior cone

condition and let Φ ∈ C 2k (Ω× Ω) be symmetric and strictly conditionally
positive definite of order L. Fix α ∈ N

M
0 with |α| ≤ k. Then there exist

positive constants h0 and C independent of x , f and Φ, such that

|Dαf (x)− DαR (x) | ≤ Ch
k−|α|
XN

√

CΦ (x)|f |NΦ(Ω),

provided hXN
≤ h0 and f ∈ NΦ(Ω), where

CΦ (x) = max
|β|+|γ|=2k

(

max
w ,z∈Ω∩B(x ,C2hXN )

∣

∣

∣
Dβ
1 D

γ
2 Φ (w , z)

∣

∣

∣

)

.

The interpolation with a C 2k smooth kernel has approximation order k .
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Preliminaries: RBF-PU interpolation

PUM and regular coverings

Dealing with large data sets it is convenient to use the PUM. Its basic
idea is to start with a partition of the open and bounded domain Ω
into d subdomains or patches Ωj , such that Ω ⊆ ∪d

j=1Ωj , with some
mild overlap among them.

Definition

Suppose that Ω ⊆ R
M is bounded and XN = {x i , i = 1, . . . ,N} ⊆ Ω is

given. An open and bounded covering {Ωj}
d
j=1 is called regular for

(Ω,XN) if the following properties are satisfied:

i. for each x ∈ Ω, the number of subdomains Ωj , with x ∈ Ωj , is
bounded by a global constant C ,

ii. each subdomain Ωj satisfies an interior cone condition,

iii. the local fill distances hXNj
are uniformly bounded by the global fill

distance hXN
, where XNj

= XN ∩ Ωj .
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Preliminaries: RBF-PU interpolation

PUM and locally supported weights

Definition

A family of compactly supported, non-negative and continuous functions
{Wj}

d
j=1 is a k-stable partition of unity if

i. supp (Wj) ⊆ Ωj ,

ii.
∑d

j=1Wj (x) = 1, x ∈ Ω,

iii. for every β ∈ N
M , with |β| ≤ k , there exists a constant Cβ > 0 such

that

∥

∥

∥DβWj

∥

∥

∥

L∞(Ωj )
≤

Cβ
(

supx ,y∈Ωj
‖x − y‖2

)|β|
, j = 1, . . . , d .
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Preliminaries: RBF-PU interpolation

RBF-PUM

Then, for each subdomain Ωj we consider a radial basis function Rj ,
as local interpolant and the global approximant is given by:

I(x) =
d
∑

j=1

Rj(x)Wj(x), x ∈ Ω.

Thus, to find the PUM interpolant we need to solve d linear systems
of the form Ajc j = f j , where c j = (c j1, . . . , c

j
Nj
)T ,

f j = (f j1 , . . . , f
j
Nj
)T and

(Aj)ik = φ(||x j
i − x

j
k ||2), x

j
i ∈ Ωj , i , k = 1, . . . ,Nj .
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Preliminaries: RBF-PU interpolation

Error bounds for RBF-PU interpolants

Theorem

Let Ω ⊆ R
M be open and bounded and XN = {x i , i = 1, . . . ,N} ⊆ Ω. Let

φ ∈ C k
ν (R

M) be a strictly conditionally positive definite function of order
L. Let {Ωj}

d
j=1 be a regular covering for (Ω,XN) and let {Wj}

d
j=1 be

k-stable for {Ωj}
d
j=1. Then the error between f ∈ Nφ (Ω) and its PU

interpolant can be bounded by

|Dβf (x)− DβI (x) | ≤ C
′

h
(k+ν)/2−|β|
XN

|f |Nφ(Ω),

for all x ∈ Ω and all |β| ≤ k/2.

Then, the partition of unity interpolant preserves the local approximation
order for the global fit.
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On the efficiency of the PUM

Statement of the problem

In the PUM, the efficient organization of the scattered data among
the subdomains turns out to be the crucial step.

Techniques as kd-trees, which allow to partition data in a
k-dimensional space have been designed.

Here, we provide a partitioning structure, the so-called Sorting-based
Partitioning Structure (S-PS), which is built ad hoc for the PUM with
hyperspheres as patches.

The set XN is partitioned by a quicksort routine into qM blocks. In
this way, we obtain qM subsets XNk

, where XNk
are the points in the

k-th neighborhood (composed by the k-th block and its 2M − 1
neighboring blocks).

Here, q = ⌈1/δ⌉, where δ = 1/d1/M is the radius of patches and d is
the number of PU subdomains. Moreover, d is so that N/d ≈ 4M

(see Figure 2).
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On the efficiency of the PUM

The problem geometry

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

y
Figure 1: An example of the problem geometry in a 2D framework: the set of
data sites XN (blue), the convex hull Ω (black), the rectangle R containing Ω
(pink) and the bounding box L (orange).

The set of PU subdomain centres Cd = {(x̄j , ȳj), j = 1, . . . , d} is
constructed in Ω.

Cd is obtained by building a grid of dPU =

⌊

1
2 lbox

(

N
AK

)1/2
⌋2

points

on R. In this way the ratio N/d ≈ 4 is preserved on Ω.
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On the efficiency of the PUM

The sorting-based data structure

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x
1

x
2

q 2q q
2

1

2

q+1 (q−1)q+1

Figure 2: The k-th block (red), a
subdomain centre belonging to the k-th
block (pink) and the neighbourhood set
(black).

Given a PU centre x̄ j , if km is the index of the strip parallel to the
subspace of dimension M − 1 generated by xp, p = 1, . . . ,M, and
p 6= m, containing the m-th coordinate of x̄ j , then the index of the
k-th block containing the PU centre is

k =
M−1
∑

m=1

(km − 1) qM−m + kM .
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On the efficiency of the PUM

Complexity analysis of the S-PS

We summarize in Table 2 the complexity costs of the S-PS.

Table 2: Computational costs concerning the S-PS routine and the kd-tree one.

M S-PS kd-tree S-PS kd-tree
structure structure search search

2 O(3/2N logN) O(2N logN) O(1) O(logN)

3 O(2N logN) O(3N logN) O(1) O(logN)

Concerning the searching routine, for each subdomain a quicksort
procedure which requires O(Nk logNk) time complexity is used to
order distances. Moreover, observing that the data sites in a
neighbourhood are about N/(3q)M , we obtain:

O

(

N

3MqM
log

N

3MqM

)

≈ O(1).
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On the efficiency of the PUM

Numerical experiments I

To point out the accuracy of our tests we will refer to the Maximum
Absolute Error (MAE) and the Root Mean Square Error (RMSE):

MAE = max
1≤i≤s

|f (x̃ i )− I(x̃ i )|, RMSE =

√

√

√

√

1

s

s
∑

i=1

|f (x̃ i )− I(x̃ i )|2,

where x̃ i , i = 1, . . . , s, are the evaluation points.

We also compute the CPU times (refer to Tables 3–4) and two
conditioning estimates, named the Maximum Conditioning number
(MaxCond) and Average Conditioning number (AvCond):

MaxCond = max
1≤j≤d

cond(Aj), AvCond =
1

d

d
∑

j=1

cond(Aj),

Tests are carried out considering the well-known 2D Franke’s function
and several sets of Halton data in a pentagonal region Ω ⊆ [0, 1]2.
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On the efficiency of the PUM

Numerical experiments II

Table 3: MAEs, RMSEs, MaxConds and AvConds for a pentagonal domain using
the Franke’s function as test function and the W2 function with ε = 0.5.

N MAE RMSE MaxCond AvCond

622 1.65E− 03 1.40E− 04 1.30E+ 07 7.12E+ 06
2499 5.02E− 04 3.30E− 05 1.72E+ 08 4.82E+ 07
9999 4.33E− 05 6.33E− 06 1.92E+ 09 5.46E+ 08
39991 9.86E− 06 1.25E− 06 1.96E+ 10 3.99E+ 09
159994 1.67E− 06 3.05E− 07 1.74E+ 11 3.56E+ 10
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On the efficiency of the PUM

Numerical experiments II

The CPU times obtained with the block-based partitioning structure
are compared with the only full Matlab implemented package for
kd-trees, written by P. Vemulapalli, available at Matlab central file
exchange.

Table 4: CPU times obtained by running the S-PS and the kd-tree procedure.

N 622 2499 9999 39991 159994

tS−PS 1.0 3.7 9.1 34.1 142.3

tkd−tree 15.3 42.3 134.0 494.1 2013.88
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On the efficiency of the PUM

Application to reconstruction of 3D objects

The S-PS procedure works for 3D data sets and thus enables us to
reconstruct 3D objects, refer to Figure 3 and Table 5.

Figure 3: The Stanford Bunny with 8171 (left) and 35947 (right) data points.

Table 5: CPU times obtained by running the S-PS and the kd-tree procedure.

N 453 1889 8171 35947

tS−PS 9.7 39.8 318.4 3881.9
tkd−tree 144.8 589.5 3141.4 64909.8
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On the efficiency of the PUM

The integer-based data structure

The most expensive step in the S-PS is the computational cost of the
sorting procedures used to order the data. This is also the reason why
it can be applied only in low dimensions.

However, we can avoid this drawback if we assign to each point the
corresponding block by rounding off to an integer value.

Precisely, given a PU centre, to find the indices km, m = 1, . . . ,M, of
the strips to which it belongs, we use an Integer-based Partitioning
Structure (I-PS) consisting in rounding off to an integer value. Thus,
for each PU centre x̄ j = (x̄j1, . . . , x̄jM), we have that

km =

⌈

x̄jm
δ

⌉

.

The I-PS turns out to be more efficient than the S-PS (refer to Table
6 and Figure 4).
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On the efficiency of the PUM

Numerical experiments III

Table 6: CPU times (in seconds) obtained by running the sorting-based procedure
(tS−PS) and the integer-based one (tI−PS).

N 25000 50000 100000 200000

tI−PS 5.13 10.68 21.99 45.00
tS−PS 5.21 12.40 28.77 71.55

0.5 1 1.5 2

x 10
5

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

N

t I−
P

S
/t

S
−

P
S

Figure 4: CPU time ratios tI−PS/tS−PS

by varying N.
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On the accuracy of the PU method
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On the accuracy of the PU method

Statement of the problem

The local basis functions are defined in function of a shape parameter
which greatly affects the accuracy of the local interpolants.

Many researchers already worked on the problem of finding suitable
values for the shape parameter in order to avoid problems of
instability.

However, in the PU method also the sizes of the local systems play a
crucial role for the final outcome.

Focusing on hyperspherical patches, our aim consists in developing a
method which enables us to select both suitable sizes of the different
PU subdomains and shape parameters, i.e. to choose (δj , εj), where
δj is the PU radius and εj is the shape parameter.
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On the accuracy of the PU method

Optimal local RBF approximants

Among several techniques for selecting the optimal shape parameter,
we focus on the so-called Leave One Out Cross Validation (LOOCV),
properly modified for a bivariate optimization problem (BLOOCV).

For a fixed i ∈ {1, . . . ,Nj}, let

R
(i)
j (x) =

Nj
∑

k=1,k 6=i

c jkφ(||x − x
j
k ||2) and e ji = f ji − R

(i)
j (x j

i ),

be respectively the j-th interpolant obtained leaving out the i-th data
on Ωj and the error at the i-th point.

The computation of the error can be simplified by calculating

e ji =
c ji

(Aj)
−1
ii

,

where c ji is the i-th coefficient of Rj , based on the full data set.
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On the accuracy of the PU method

The BLOOCV-PU approximant

Thus, in order to obtain an error estimate, we compute the vector
e j(δj , εj) = (e j1, . . . , e

j
Nj
).

Then, focusing on || · ||∞, we compute e j for several values
(δj1 , . . . , δjP ) and (εj1 , . . . , εjQ ), i.e. we provide

Ej =







||e j(δj1 , εj1)||∞ · · · ||e j(δj1 , εjQ )||∞
...

. . .
...

||e j(δjP , εj1)||∞ · · · ||e j(δjP , εjQ )||∞






.

The j-th local approximant is computed considering the couple (δj , εj)
if ||e j(δj , εj)||∞ = minp=1,...,P(minq=1,...,Q(Ej)pq). Denoting by Nj(δj)
the number of points on Ωj of radius δj , the BLOOCV-PU is given by

Ĩ(x) =
d
∑

j=1

Nj (δj )
∑

k=1

c jkφεj (||x − x
j
k ||2)Wj(x), x ∈ Ω.
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On the accuracy of the PU method

Numerical experiments I

To test the accuracy, we compute MAE and RMSE (refer to Table 7).

Tests are carried out considering the so-called valley function

f (x1, x2) =
1

2
x2
[

cos(4x21 + x22 − 1)
]4

.

We use both Halton data and non-conformal points (see Figure 5).
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Non-Conformal points (NC).
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On the accuracy of the PU method

Numerical experiments II

N Method RMSE H MAE H RMSE NC MAE NC

289 PU 2.59E− 02 4.30E− 01 5.30E− 02 5.00E− 01
BLOOCV-PU 1.32E− 02 2.76E− 01 3.47E− 02 3.13E− 01

1089 PU 3.51E− 03 6.20E− 02 3.90E− 02 5.00E− 01
BLOOCV-PU 2.11E− 04 8.93E− 03 7.11E− 03 8.38E− 02

4225 PU 8.63E− 04 2.00E− 02 4.63E− 02 4.99E− 01
BLOOCV-PU 3.88E− 06 1.12E− 04 2.39E− 03 4.77E− 02

16641 PU 4.07E− 04 1.18E− 02 4.34E− 02 5.00E− 01
BLOOCV-PU 8.26E− 08 2.80E− 06 7.51E− 04 8.10E− 03

66049 PU 1.23E− 04 4.19E− 03 4.03E− 02 5.00E− 01
BLOOCV-PU 5.10E− 08 1.76E− 06 8.28E− 05 1.27E− 03

Table 7: RMSEs and MAEs computed with the IMQ for Halton points and with
the W6 for the Non-Conformal points.
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On the accuracy of the PU method

Application to Earth’s topography

We consider the black forest data set. It consists of 15885 points
representing a terrain in the neighborhood of Freiburg, Germany.

The difference between the maximal and minimal heights is 1214 m.

We use as local approximant the M2 function (see Figure 6).
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Figure 6: Left: a 2D view of the black forest data set. Right: graphical
approximation of the black forest data set. We obtain RMSE= 5.73 m,
MAE= 26.0 m, MRE= 0.021.
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On the positivity of the PU method
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On the positivity of the PU method

Statement of the problem

Dealing with applications, we often have additional properties, such
as the positivity of the measurements, which we wish to be preserved
during the interpolation process.

The positivity-preserving problem has been studied in particular cases
(e.g. for TPSs or MQ quasi-interpolation).

Moreover, such problem has been considered for CSRBFs. Precisely, a
global positive approximant obtained by adding up several positive
constraints has already been designed.

However, since a global interpolant is used, adding up other
constraints to preserve the positivity implies that the shape of the fit
is consequently globally modified.

This might lead to a considerable decrease of the quality of the
approximating function in comparison with the unconstrained CSRBF
interpolation.
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On the positivity of the PU method

Positive local RBF approximants

In order to avoid such drawback, we can perform a local
implementation.

Sufficient condition to have positive approximants on Ωj is that the

coefficients c jk are all positive. To such scope, on the subdomain Ωj

we choose a set of N̂j added data X
N̂j

= {x̂ j
i , i = Nj +1, . . . ,Nj + N̂j}.

Then, the j-th problem consists in finding R̂j of the form

R̂j (x) =

Nj
∑

k=1

c jkφε(||x − x
j
k ||2) +

Nj+N̂j
∑

k̂=Nj+1

c j
k̂
φ̂ε

k̂
(||x − x̂

j

k̂
||2),

such that

R̂j(x
j
i ) = f ji , i = 1, . . . ,Nj , c ji ≥ 0, i = 1, . . . ,Nj + N̂j ,

where φ̂ε
k̂
are CSRBFs (of different supports).
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On the positivity of the PU method

The PC-PU approximant

The reason for which we consider (for the added nodes) different
supports for the CSRBFs follows from the fact that, if they are
properly chosen, we can ensure that the problem admits solution (in
the special case for which N̂j = Nj).

In practical use, the aim is to add few data. Thus, we select via
LOOCV the optimal number of added data N̂j which yields maximal
accuracy and ensures the positivity of the local interpolant.

Therefore, for each subdomain we select a suitable number of
constraints N̂j , which can also be 0, and the Positive Constrained PU
(PC-PU) approximant assumes the form

Î (x) =
∑d

j=1

(

∑Nj

k=1 c
j
kφε(||x − x

j
k ||2)

+
∑Nj+N̂j

k̂=Nj+1
c j
k̂
φ̂ε

k̂
(||x − x̂

j

k̂
||2)

)

Wj(x).
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On the positivity of the PU method

Numerical experiments I

Tests are performed considering different sets of random points (see
Table 8) and the following test function

f1(x1, x2) = (x1 − 0.5)2 + (x2 − 0.4)2.

We consider the W2 function for the added nodes and both the W2
and IMQ functions for the given interpolation conditions.
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On the positivity of the PU method

Numerical experiments II

N Method MAE W2 RMSE W2 MAE IMQ RMSE IMQ

300 PU 1.50E− 01 1.52E− 02 1.39E− 01 1.04E− 02
PC-PU 1.50E− 01 2.03E− 02 1.39E− 01 1.44E− 02

1000 PU 7.36E− 02 3.08E− 03 7.02E− 02 2.88E− 03
PC-PU 7.96E− 02 6.44E− 03 7.02E− 02 3.49E− 03

3500 PU 6.34E− 02 1.47E− 03 5.89E− 02 1.50E− 03
PC-PU 8.40E− 02 2.86E− 03 5.89E− 02 1.66E− 03

8000 PU 2.43E− 02 4.17E− 04 2.33E− 02 3.46E− 04
PC-PU 5.99E− 02 1.03E− 03 2.33E− 02 3.68E− 04

Table 8: RMSEs and MAEs computed with the W2 and IMQ kernels for random
points.
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On the stability of the PU method
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On the stability of the PU method

Statement of the problem

In some cases, the local approximants and consequently also the
global one may suffer from instability due to ill-conditioning of the
interpolation matrices. This is particularly evident when the shape
parameter ε −→ 0.

For particular RBFs, techniques allowing to stably and accurately
compute the interpolant, such as RBF-QR methods, have already
been designed.

A more general approach, consisting in computing via a truncated
Singular Value Decomposition (SVD) stable bases, namely Weighted
SVD (WSVD) bases, is here coupled with the PU method.

The resulting approach, namely WSVD-PU method, is stable and
accurate. Indeed, while in the global case a large number of truncated
terms of the SVD must be dropped to preserve stability, a local
technique requires only few terms are eliminated.
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On the stability of the PU method

Stable local RBF approximants

The theoretical background of the WSVD bases lies in the following,

Theorem (Mercer’s Theorem)

If the kernel Φ is continuous and positive definite on a bounded set
Ω ⊆ R

M , the operator T : L2(Ω) → L2(Ω),

T [f ](x) =

∫

Ω
Φ(x , y)f (y)dy ,

has a countable set of eigenfunctions {ϕk}k and eigenvalues {λk}k . The
eigenfunctions are orthonormal in L2(Ω) and orthogonal in NΦ(Ω) with
‖ϕk‖

2
NΦ(Ω) = λ−1

k . Moreover, the kernel can be expressed in terms of the
eigencouples as

Φ(x , y) =
∑

k

λkϕk(x)ϕk(y), x , y ∈ Ω.

Alessandra De Rossi (University of Torino) alessandra.derossi@unito.it August 7–11, 2017 40 / 54



RBF-Partition of Unity Method: an overview of recent results

On the stability of the PU method

The WSVD-PU approximant

The so-constructed WSVD basis {uk}
N
k=1 has the following property:

(uk , f )ℓ2(XN) = σk(uk , f )NΦ(Ω), ∀f ∈ NΦ(Ω),

Therefore, the local interpolants can be rewritten as

R̄
Nj

j (x) =

Nj
∑

k=1

(σj
k)

−1(f|Ωj
, ujk)ℓ2(XNj

)u
j
k(x).

If we instead solve the problem over span{uj1, . . . , u
j
mj
}, mj ≤ Nj , we

find a solution given by the truncation of the local interpolants, i.e.

Ī(x) =
d
∑

j=1

R̄
mj

j (x)Wj(x), x ∈ Ω.

Thus, for each Ωj a SVD is performed and then we leave out the
Nj −mj terms which are less than or equal to a prescribed tolerance
τ . This can be efficiently carried out with Krylov space methods.
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On the stability of the PU method

Numerical experiments I

Tests are carried out by computing the RMSE for the Franke’s
function and for different values of the shape parameter ε in the
range [10−3, 102], refer to Figures 7–8.
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Figure 7: RMSEs obtained by varying ε for C∞ kernels. The classical PU
interpolant is plotted with dashed line and the WSVD-PU approximant with solid
line. From left to right, we consider the G and IMQ C∞ kernels.
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On the stability of the PU method

Numerical experiments II
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Figure 8: RMSEs obtained by varying ε for the M6 and M4 kernels, left and right
respectively.

The differences between the PU and WSVD-PU can be summarized as:

i. C∞ RBFs: improvement of stability and of the optimal accuracy,

ii. C k RBFs, k ≥ 1: improvement of stability and same optimal accuracy,

iii. C 0 RBFs: same stability and same optimal accuracy.
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Approximation of track data via PUM
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Approximation of track data via PUM

State of the art, motivations and targets

For the PUM both the sizes and shapes of the local subdomain play a
crucial role for the final outcome. Ellipsoidal patches seem to be
suitable, in particular for track data.

Furthermore, in that case the choice of anisotropic kernels naturally
follows. Any isotropic radial kernel can be turned into an anisotropic
one by using a weighted 2-norm instead of an unweighted one.

Focusing on ellipsoidal patches, our aim consists in developing a
method which enables us to select both suitable sizes of the different
PU subdomains and shape parameters, i.e. suitable local
approximants.
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Selection of the optimal local RBF approximants

The general framework

In practice, for each subdomain Ωj , the aim consists in selecting the
shape parameters εj and semi-axes of the ellipsoidal patches δj .

We will focus on the cross-validation algorithm, properly modified for
a multivariate optimization problem.

For a fixed i ∈ {1, . . . ,Nj}, let

R
(i)
j (x) =

Nj
∑

k=1,k 6=i

c jkφ(||x − x
j
k ||2) and e ji = f ji − R

(i)
j (x j

i ),

be respectively the j-th interpolant obtained leaving out the i-th data
on Ωj and the error at the i-th point.
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Selection of the optimal local RBF approximants

Local error estimates

The computation of the error can be simplified by calculating

Ej(εj , δj ) = ||(e j1, . . . , e
j
Nj
)||p =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣





c j1
(Aj)

−1
11

, . . . ,
c jNj

(Aj)
−1
NjNj





∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

p

,

where c ji is the i-th coefficient of the RBF interpolant Rj based on

the full data set and (Aj)
−1
ii

is the i-th diagonal element of the inverse
of the corresponding local interpolation matrix.

Remark

A natural choice for optimizing the local RBF interpolants consists in
computing error estimates for several values of the semi-axes and of the
shape parameters. Here, we speed up this procedure via multivariate
derivative-free optimization tools. In particular, for the implementation we
use the Matlab software and the fminsearch.m routine.
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Selection of the optimal local RBF approximants

Properties of the covering and weights

After optimizing the parameters (εj , δj), we have a PU covering,
made of ellipsoids, that satisfy interior cone conditions, indeed:

Proposition (cf. Wendland (2005), Proposition 11.26, p. 195)

If D is bounded, star-shaped with respect to B(xc , ρ), and contained in
B(xc , ρ

∗) then D satisfies an interior cone condition with radius ρ and
angle θ = 2arcsin[ρ/(2ρ∗)].

As weight functions, we select the Shepard’s weights

Wj (x) = W̄j (x)

/ d
∑

k=1

W̄k (x), j = 1, . . . , d ,

where W̄j are anisotropic Wendland’s functions. In fact, the shape
parameters are selected so that supp(W̄j) = Ωj .
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Selection of the optimal local RBF approximants

Numerical experiments

To test the accuracy, we compute MAE and RMSE for the
well-known 2D Franke’s function.

For the local approximants we take the anisotropic IMQ C∞ kernel
and for the PU weights the anisotropic Wendland’s C 2 function.

We use track data (see Figure 9) and the centres of the patches are
constructed as a grid of t2 points on Ω, where t is the number of
tracks.
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Figure 9: Left: a set of 2000
track data (25 tracks with
80 data points). Right: an
illustrative example that
shows how patches are
selected.
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Selection of the optimal local RBF approximants

Results and comparisons

N Method RMSE MAE CPU

1000 (20× 50) PU-LOOCV 8.02E− 5 1.56E− 3 76.6
PU 8.34E− 4 7.93E− 3 1.78

2000 (25× 80) PU-LOOCV 2.58E− 5 3.33E− 4 119
PU 1.16E− 4 3.29E− 3 3.88

4000 (40× 100) PU-LOOCV 4.76E− 6 8.70E− 5 182
PU 1.43E− 3 4.28E− 2 22.2

8000 (50× 160) PU-LOOCV 1.25E− 6 2.77E− 5 290
PU 1.72E− 4 3.14E− 3 53.9

16000 (80× 200) PU-LOOCV 4.55E− 7 6.14E− 6 651
PU 4.24E− 4 4.95E− 3 229
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Selection of the optimal local RBF approximants

Application to Earth’s topography

To test the method with real data, we consider points extracted from
maps and specifically the Korea’s map (see Figure 10).

This example is particularly suitable because, even if we deal with real
data, we can consider an arbitrary number of evaluation points to test
the fit.

We use as local approximants the Matérn M0 and M2.
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Figure 10: Left: the Korea’s map and the extracted tracks. Right: a 3D view of
the data set.
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Selection of the optimal local RBF approximants

Application to Earth’s topography

The results are shown in Figure 11 and in Table 9.

Figure 11: The
reconstructed surfaces
obtained by using the M0
(left) and M2 (right)
kernels.

N RBF RMSE MAE

4000 (40× 100) M0 9.71E− 3 1.91E− 1

M2 5.32E− 3 6.91E− 2

Table 9: RMSEs and MAEs obtained by using the anisotropic Matérn kernels for
the Korea data set.
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Final remarks

Conclusions

PUM allows to overcome the high computational cost associated to
the global RBF method. Its efficiency can be improved with the use
of ad hoc partitioning structures. Furthermore, we provide numerical
tools that enable us to compute stable and accurate PU
approximants, which can also satisfy the positivity property.

Work in progress: Our aim is to provide a tool enabling us to select,
for each PU subdomain, both its sizes and shape parameters.
Numerical experiments with real world measurements shows that the
proposed method accurately fits track data with highly varying
densities. Moreover, the implementation is carried out with a new
multivariate optimization procedure.
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Final remarks

Conclusions

Thank you for the attention!
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